Continuous Inverse Shadowing and Hyperbolicity

نویسنده

  • KEONHEE LEE
چکیده

We study the concepts of continuous shadowing and continuous inverse shadowing with respect to various classes of admissible pseudo orbits, and characterize hyperbolicity and structural stability using the notion of continuous inverse shadowing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shadowing and inverse shadowing in set-valued dynamical systems. Hyperbolic case

We introduce a new hyperbolicity condition for set-valued dynamical systems and show that this condition implies the shadowing and inverse shadowing properties.

متن کامل

Semi-hyperbolicity and bi-shadowing in nonautonomous difference equations with Lipschitz mappings

It is shown how known results for autonomous difference equations can be adapted to definitions of semi-hyperbolicity and bi-shadowing generalized to nonautonomous difference equations with Lipschitz continuous mappings. In particular, invertibility and smoothness of the mappings are not required and, for greater applicability, the mappings are allowed to act between possibly different Banach s...

متن کامل

Continuous and Inverse Shadowing for Flows

We define continuous and inverse shadowing for flows and prove some properties. In particular, we will prove that an expansive flow without fixed points on a compact metric space which is a shadowing is also a continuous shadowing and hence an inverse shadowing (on a compact manifold without boundary).

متن کامل

Shadowing by Non Uniformly Hyperbolic Periodic Points and Uniform Hyperbolicity

We prove that, under a mild condition on the hyperbolicity of its periodic points, a map g which is topologically conjugated to a hyperbolic map (respectively, an expanding map) is also a hyperbolic map (respectively, an expanding map). In particular, this result gives a partial positive answer for a question done by A. Katok, in a related context.

متن کامل

Stability Theorems and Hyperbolicity in Dynamical Systems

We present an approach to proving structural stability and semi-stability theorems for diffeomorphisms and flows using the idea of shadowing an e-chain. We treat the cases when the whole manifold is hyperbolic and when the chain recurrent set is hyperbolic and the strong transversality condition is satisfied. The last two sections discuss the progress made on the converse to the structural stab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003